Extensions 1→N→G→Q→1 with N=C22 and Q=C2×C38

Direct product G=N×Q with N=C22 and Q=C2×C38
dρLabelID
C23×C38304C2^3xC38304,42

Semidirect products G=N:Q with N=C22 and Q=C2×C38
extensionφ:Q→Aut NdρLabelID
C22⋊(C2×C38) = D4×C38φ: C2×C38/C38C2 ⊆ Aut C22152C2^2:(C2xC38)304,38

Non-split extensions G=N.Q with N=C22 and Q=C2×C38
extensionφ:Q→Aut NdρLabelID
C22.(C2×C38) = C4○D4×C19φ: C2×C38/C38C2 ⊆ Aut C221522C2^2.(C2xC38)304,40
C22.2(C2×C38) = C22⋊C4×C19central extension (φ=1)152C2^2.2(C2xC38)304,20
C22.3(C2×C38) = C4⋊C4×C19central extension (φ=1)304C2^2.3(C2xC38)304,21
C22.4(C2×C38) = Q8×C38central extension (φ=1)304C2^2.4(C2xC38)304,39

׿
×
𝔽